
opualingfingsystems
UNIT - 4

STORAGE MANAGEMENT

feedback1correctionsi.vibha@pesu.pes.edu VIBHA MASTI

MASS STORAGE STRUCTURES

• secondary storage in modern computers

• Hard Disks (magnetic disks) , SSDs , magnetic tape

1. Magnetic Disk

• consists of multiple flat cylindrical disks (Platters) capable of

rotating about a central axis called the spindle

• The surface of the platters is made of a magnetic material

• the disks are divided into concentric circular regions known as
tracks

,
and the set of all tracks at a given distance from the

spindle forms a cylinder lander arm)

• Around each disk is a read/write head that attaches to

the main arm assembly . The read/write head can move linearly
to access different tracks of the disk (innermost : track 07

• The spindle rotates the disks so that the rlw head can access

all the sectors of a track (speed : 60-250 rps)

track t spindle

:÷⇐-
sectors

: I
1512137 ;*,:!!•T
:p :
::::÷i_-
I
rotation

arm assembly

° Diameter of platter : ranges from 1.8
"
to 3.5

"

° Storage capacity typically -30 GB to 4TB per drive

platter

✓
chassis

actuator
arm

spindle
actuator

Performance

° Transfer rate of HD : rate at which data transferred from

secondary storage to primary storage (t transfer : time taken
to transfer one unit of data to RAM)

° transfer depends on disk positioning time ,
which is the

sum of seek time (time taken to move arm to the right cylinder)
and rotational latency (time taken to rotate the disk such

that the correct sector is under the rlw head)

data to transfer+
transfer

=

transfer rate

+
transfer

= X (t
seek t trot)

• Average access time -- avg seek time t avg rotational

latency

+
avg rot latency = time period of rotation

2

Head crash

° There is a small cushion of air maintained between the read)
write head and the disk at all times to protect the data

° A head crash occurs when the ready write head comes in

contact with the rotating disk

° This typically results in a loss of data that cannot be

recovered

YO BUS

° Disk drives are attached to the computers (externally or

internally) via Yo buses or interfaces

° Buses : EIDE
, ATA , serial ATA (SATA), Fibre Channel ,

SAS ,

Firewire
,
Universal serial Bus (USB)

• computer has host controller to communicate with HD's disk

controller via yo bus

2. Solid State Drive

° Nonvolatile memory for secondary permanent storage

° Storage technology : DRAM with battery, flash memory

° More reliable than HDS as there are no moving parts and
consume less power

° More expensive and shorter life spans , lower capacity

Computer specialist John Smith arranges and
examines cannisters of magnetic tape used in
the processing of medical data at the National
Library of Medicine.

° SSDs faster than HDS and bus interfaces are too slow for

access C directly connected to PCI in many cases)

• SSDs are sometimes used as a tier of cache between HDS

and primary storage

3. Magnetic Tape

• Old technology for secondary storage

° Permanent clasts much longer) , slow to retrieve data from

C- 1000 x slower random access than HD)

° Storage of infrequently accessed data
, backups

° Tape kept in a spool and wound past read) write head

° Accessing correct spot on tape can take minutes (access time)
but read)write once spot is found is as fast as some disks

(n 140 MBIS)

° Tapes can have a capacity of 200GB - 1.5 TB
, typically

° Categorised by width : 4mm ,
8mm

,
19mm

,
44inch

, 1/2 inch

° Technologies : LTO-3 , LTO -4 , LTO -5 , SDLT , T 10000

(19605)

Disk scheduling
° Fast access time and large disk bandwidth ; minimise seek

time time taken to move arm)

• Disk bandwidth = total no . of bytes transferred
time between first req and transfer completion

° Scheduling of yo request servicing allows for faster transfer
and improved bandwidth

• Whenever process needs to perform disk yo operations , it
issues a system call to the OS with specific information in the

request
- operation type : input or output
- Disk address for data transfer (logical)
- Memory address for data transfer (logical)
- No

,
of sectors to transfer

• If disk drive and disk controller available when request
made

,
serviced immediately

° If not
, request added to the end of pending requests queue,

maintained by OS

DISK SCHEDULING ALGORITHMS

° To minimise access time (seek time and rotational latency)

by scheduling requests made

I . FCFS (First come first serve)

° First request in queue serviced first CFIFO)
• Not efficient if addresses far apart

• Head movement : (98 - 53) t (183 - 98) t (183-37)+(122-37)
+ (122-14) t (124 - 14) t (124-65) t

(67-65)=640
head movements

2 . SSTF (Shortest Seek Time first)

° Request with shortest seek time serviced first

° Can lead to starvation of requests with large seek distances

• Head movement : (65-53)+(67-65) t (67-37)+(37-14) t
(98-14)+(122-98) -11124-122) t

(183-124)=236
head movements

3. SCAN Scheduling

° Disk starts at one end of the disk and moves towards the

other end
, servicing requests until it reaches other end of

the disk

° After reaching the other end , it starts scanning back to the
first end

, continuing to service requests

• Also called elevator algorithm

. Eg : head starts at 53
, moving towards o

° Head movements : (53-07-1483-0)=236

° Requests that appear right after rlw head crosses must

wait for rlw head to reverse directions and come back

4
.

C-SCAN scheduling
° More uniform wait time than SCAN

° Head moves from one end to another and then goes back
to the first end without scanning in the opposite direction

° Cylinder treated as circular list

5 . LOOK and C- LOOK scheduling

° LOOK is similar to SCAN but it goes only to the last
request and not the end of the disk

° C-Look is similar to C-SCAN

• Eg : C- LOOK

swap space management

• Virtual memory uses disk space as an extension of main

memory when memory availability is critically low

• Swap space is present in disk as a part of the normal

file system or as a separate disk partition (Linux)

• Swap space management - task of OS

•

swapping takes time and disk access is slower ; need to

optimise

° 4.3 BSD allocates swap space when process starts
- holds text segment (program) and data segment

• Solaris 2 (Sun Microsystems) allocates swap space only when
dirty page evicted from memory

• Faster to reread page from file system than to swap in

and then swap out CSolaris)

• Swap space only used for anonymous memory (not backed
by files stack

, heap)

• Kernel uses swap maps array of integer counters to

available
, positive integer number of mappings to swapped

page)

Data structures for swapping on Linux systems

4KB

T T
free used by

RAID structure
3 processes

(Independent)
• Redundant Array Of Inexpensive Disks - RAID techniques

• Redundant data stored on multiple disks ; more reliable

•

Higher data transfer rates

Redundancy vs Reliability

• A single disk less likely to fail than any disk out of N

disks

• Mean time to failure of disk approx . lifetime of single disk

• Array of disks of different data decreases mean time to failure

(lifetime)

MTTFN = (MTTF
,
) / N

° Balance between redundancy and reliability

Mirroring
• Duplicate (mirror) data of a disk onto another disk

• Most expensive, most redundant
• One logical disk : 2 physical disks Cmirrored volume)
• Data loss very rare

• mean time to failure depends on mean time to failure

of individual disks and mean time to repair

MTTF = (MTTF
,
} assuming disk failures

2x MTTR are independent

• Solid state non-volatile RAM Cwriteback cache) common

to both disks used to protect from data loss during
power failures CNVRAM)

dirty→
✓ bit

→
c-

cache

CPU main

write- back cache memory

• Rate of handling disk read requests : double
• Transfer rate same

Data striping

• Split bits of each byte across different disk ; bit
- level

striping

• Eg : one byte split into 8 disks (bit i stored in ith

disk)

• Access rate : 8x normal rate

• Block- level striping : n disks
,
ith block of a file goes

to block (i mod n) + I block level most common

° Sector- level and byte- level striping also possible

Levels of RAID

° Combination of reliability of mirroring and data transfer

rates of striping

• Low-cost redundancy and parity bits (error correction)
combination to trade off cost and reliability

(a) RAID 0

• Non - redundant striping Cblock level)

• To store two disks' worth of data
,
two disks used

source : Wikipedia

• For four disks :

(b) RAID 1

° Complete mirroring cfull redundancy, expensive)

source : Wikipedia

• Four disks

(c) RAID 2

°

Memory style error - correcting codes (Eco and bit

striping cnot block)

• Each byte in memory has parity bit associated with it :

number of set bits in byte (bit=D is even (parity -- O)
or odd Cparity =D

• Uses Hamming code for error detection (linear error

correcting code) can detect upto 2-bit errors and

correct 1-bit errors

• [7,4] Hamming code encodes 4 data bits into 7 bits

by adding 3 parity bits

source : Wikipedia

• For four disks
'
data

,
3 disks overhead (Hamming (7)4)

code 3 parity bits for 4 data bits)

•

Only original level of raid not currently used

(d) RAID 3

• Bit interleaved parity organisation

• Disk controllers can detect if sector has been read

correctly

•

Single parity bit for error correction and detection

° Byte- level striping , single dedicated parity disk

°

High transfer rates for apps that make long sequential
read and write requests

source : Wikipedia

° Bad performance for short
,
random access

• Rarely used in practice

• Faster read time than RAID 1 (due to striping)

•

Only single yo request at a time as each byte split
across multiple disks and every disk must participate in

single yo request

• Overhead computing parity bit implies slow write times

• Solution dedicated hardware for parity computation ,
offloaded from CPU and cache to buffer disk blocks

CNVRAM)

(e) RAID 4

• Block - interleaved parity organisation

• Block level striping (RAID 0)

• One disk for parity bit for corresponding block ; disk

failure missing bit can be reconstructed from other bits

and parity bits

• Good performance for random reads
,
bad performance

of random writes

° Each block access requires only one disk access
,
so some

level of parallelism can be achieved leg : Al Ee 1327

source : Wikipedia

° Read - modify - write cycle; single write requires 4 disk

accesses 2 reads (block Ee parity) and 2 Writes C block Eg

parity)

• Block must be read
,
modified and written back

• RAID 4 is scalable ; allows new disks to be added (if

they are initialised with 0 's
,
the parity does not change

(f) RAID 5

• Block - interleaved distributed parity

• Instead of data in N disks and parity in 1 disk
,

data and parity distributed evenly across all disks

source : Wikipedia

° For an array of n disks
,
the parity of the nth

block is stored in disk Cm mod n) + I

• A single disk cannot store a block and its parity
as disk failure would result in loss of parity as well as

block

• RAID 5 most commonly used parity system

(g) RAID 6

• Pt Q redundancy scheme

• Additional redundant information to RAID 5 to guard
against multiple disk failure

• Error checking codes (Reed-Solomon codes) used instead of

parity in some layouts

• 2 bits of redundant data for every 4 bits of data;

can tolerate two disk failures

source : Wikipedia

° Unlike RAID 2,3 , 4,5 , can tolerate upto 2 disk

failures

Ch) RAID 0+1

• Combination of RAID 0 and RAID 1 parallelism allowed

• Performance of KAIDO
, reliability of RAID 1 (double the

number of disks needed like RAID 1)

° Better performance than RAID 5

source : Wikipedia

• RAID 0 striping -1 RAID 1 mirroring

d) RAID I -10

• Disks mirrored in pairs and then striped

°

Advantage over RAID 0-11 : if single disk fails
, strip

accessible

source : Wikipedia

Useful Features

• Snapshot : view of file system before last update

• Replication : automatic duplication of writes for redundancy
(synchronous and asynchronous replication

• Hot spare disk : used as replacement in case of disk failure

without waiting for disk to be replaced by human

Extensions

• ZFS : adds checksums of all data (data integrity) - Solaris
• Disk allocation in pools
• No volumes / partitions and volume management
• ZFS aggregates the devices into a storage pool

• LUM CLogical Volume Manage)

FILE SYSTEM

File

° Named collection of related data stored on secondary storage

• Attributes : name
, unique tag number/ identifier, type , location

(pointer), size , protection Crwx) , time Eg date , user identification
+ disk

,
track

,
sector

Operations
• create

• Read
• Write

• Seek

• Delete

• Truncate

•

open search Eg move contents to memory
• Close move from memory to directory structure on disk

Open Files

° 05 maintains open file table cache) allowing for direct
indexing

• File open count maintained for each file : no . of processes that

have opened the file

-

open c) increases count

- close C) decreases count

Locker

• Shared lock reader lock ; several processes can acquire

concurrently

• Exclusive lock writer lock

• Mandatory lock OS prevents other process from obtaining
exclusive lock if a process already has acquired it

• Advisory look upto programmer to obtain and release

locks

For example, assume a process acquires an exclusive lock on the file
system.log. If we attempt to open system.log from another process—for
example, a text editor—the operating system will prevent access until
the exclusive lock is released. This occurs even if the text editor is
not written explicitly to acquire the lock. Alternatively, if the lock
is advisory, then the operating system will not prevent the text
editor from acquiring access to system.log. Rather, the text editor
must be written so that it manually acquires the lock before accessing
the file. In other words, if the locking scheme is mandatory, the
operating system ensures locking integrity. For advisory locking, it
is up to software developers to ensure that locks are appropriately
acquired and released. As a general rule, Windows operating systems
adopt mandatory locking, and UNIX systems employ advisory locks.

• From textbook :

File Extensions

File structure

• certain files must conform to a structure understood by
the OS

• Executable files follow structure so OS knows where the first

instruction is located and where in memory to load
the file

• Some oses have set of system - supported file structures

• Disadvantage of supporting multiple file structures : size of 0s

becomes too large

Internal File structure

• UNIX defines all files to be a stream of bytes , each
addressible by its offset from the beginning of the file

(1) Sequential Access File

• read-next) reads next portion of file and advances file

pointer

• write - next) appends to the file and updates file pointer
with the new eof

• Based on tape model of file ; works well on sequential and
random access devices

(2) Direct Access File

• random access

• databases

• Based on disk model of file ; when query entered
,
block

containing the record is directly fetched

• read Cn) to read block number n directly

• write Cn) to write into block number n directly

• can use read-next) and write-nextc) with another

function position - file Cn) instead of readcn) and write Cn)

• n= relative block number (from beginning of file) so that
OS decides where to allocate memory for the file (allocation

problem)

simulation of sequential Access on Direct Access

•

Keep track of current position up

(3) Indexing
• can be built on top of direct access

• creation of index in memory for file for fast determination

of location of data

° If index file too large , index file for index file

° IBM's indexed sequential access method CISAM)

- small master index points to disk blocks

- disk block read and secondary index located
- secondary index used to find file block

• VMS OS index Eg relative files

DIRECTORY STRUCTURE

° Collection of nodes containing information about files

• Disk can be entirely used for single file system ,
or it can be

partitioned into volumes each of a particular file system

• Each volume with file system contains information about the

files in the system in device directory or directory

•

Directory stores information cname
,
size
,
location , type etc .)

of all files on that volume

Solaris file systems

DIRECTORY OPERATIONS

• Search for file
° Create file
• Delete file
• List a directory
° Rename file

• Traverse file system

echo $PATH

Single - Level DIRECTORY
• All files in single directory
• All unique names

Two -Level DIRECTORY

°

Separate directory for each user CUFD - user file directory)
• Users isolated
• Username Eg file name define path name
• Search path : sequence of directories searched when a file is

named (Linux
,
MacOS :$PATH env variable)

Free -Structured DIRECTORY

• Tree of arbitrary height
• Directories and subdirectories
• Each file has unique path
• One bit in each directory entry defines it as a file to) or
a subdirectory CD

• Each process has current working directory
• When reference to file made

,
current working directory

searched
,
then search path

°

Change directory : change - directory c)
• Absolute or relative path name

Acyclic lfraph DIRECTORY

• Shared subdirectories and files among multiple users

• Links (pointers to files or directories)

general graph DIRECTORY

• cycles allowed
° Self - referencing cycles problem
• Garbage collection to clear dangling pointers; time - consuming
• Cycle detection algorithm for new entries

File System Mounting

• File system must be mounted before processes can access it

° OS given device name and Mount point
• OS verifies device's file system (device driver to read files

from directory and check format)
• OS notes in its directory structure that new device mounted

at location (Mount point)

File sharing

• Multiple users
, multiple file systems

• Resolving conflicts

MULTIPLE USERS

• Access control Eg protection between users 4 files

• File /directory owner/user and group
• Owner has all permissions and decides permissions for other users

and groups
• When user requests access to a file

,
user ID compared with file

owner attribute (also group ID)

REMOTE FILE SYSTEMS

• ftp manually transferring files between machines
• Distributed file system remote directories visible from local system
• Cloud Computing
• WWW anonymous file exchange with wrapper for ftp

Client-server model
- server serves file to client that requested it
- server serves to client based on IP address

- Encrypted client for security unsecure simpler and more

commonly used
- File operation requests via DFS protocol

- File open request sent with user ID of client
- Server checks credentials and checks if user has authority
to access files

- NFS : UNIX standard

Distributed Information Systems
- Distributed Naming services
- Hosts identify each other via domain name CDNS)

- Windows : CIFS

- DIS NIS
,
LDAP

,
DNS Active Directory

Failure Modes

- Disk failure
,
network issues

- DFS protocols allow delaying of file operations on remote hosts

instead of deleting commands

- To reduce loss
,
state information of client Ee server can be

stored

- NFS 4 : NFS is stateful

- NFS3 : information in request ; less secure

CONSISTENCY SEMANTICS

° HOW multiple users access shared file simultaneously
• Process synchronisation algorithms
• File session : series of accesses between open 1) and closeC)

consistency
semantics

UNIX Immutable -

semantics
OpenAFS
semantics / Shared- File

session semantics

semantics

UNIX semantics

- Writes to an open file by a user are immediately visible to

other users who have opened the file
- One mode has a single shared current location pointer of
the file ; any advances made by one user are reflected in

all users
' files

- File : single physical image and contention causes delays

Andrew File System Open AFS Semantics

- writes to open file not visible immediately to other users

who have the file open
- Changes in a session only visible after starting a new

session and closing the file
- can be compared to Git local changes take place independently
and are only reflected after push (close) and pull (starting
new session)

,
but for a single file

Immutable -Shared- file semantics

- All shared files are declared as read-only
- Filenames cannot be reused and file is immutable

- simple implementation

File protection
° Reliability: physically reliable ; safe from damage
°

Duplication of files (see - RAID)
• Protection ; proper access by users
• Access types limited to different extents for different users

TYPES of ACCESS

• Read
• write

• Execute

• Append
° Delete

° List Cfile attributes>

Access control

• User- dependent access
• Each file / directory has associated Access Control List CACL)

• ACL specifies accesses for each user
• User job denied access if protection violation occurs

• List with every user tedious and not scalable

classification of Users

1) Owner : user who created the file

2) Group : set of users sharing the file (work group)
3) Universe : all other users in the system

° Each file associated with group
e UNIX systems : 3 letters for each class

r w ✗ > 3 bits

read
" t ↳

execute
write

• Eg: rwxrw- r - -
www

1 I L Current mode = 764
owner group

universe

111 110
100

7 4
6

° Add group to file test . c

chgrp new-group test .c

• change access to rwx for all

chmod 777 test -c

• sample UNIX directory listing

1
Tubdirectory
¥r hyp

¥
t.EE
subdirectory

Other Protection
• Password- protected files Eg directories

File Jystenz STRUCTURE

• Efficient access to secondary devices with easy retrieval
• Provides UI to disk storage
•

Map logical file system to physical storage devices (algorithm)
• YO control level : device drivers Eg interrupt handlers to transfer
data between disk and main memory

• Device driver : translator from high- level instructions to low- level
hardware-specific exams

• Basic filesystem : sends commands to device drivers to read/write
to disk

, manages memory buffers § caches
• File organisation module : translate file's logical block to physical
block

,
free space manager to provide unallocated blocks to file

organisation module

• Logical file system : manages metadata, directory structure , file control
via File Control Blocks CF CBs) contains info on ownership ,
permissions etc

.

Implementation of File systems

• several on-disk Eg in-memory structures used to implement a
file system

On-Disk structures

1) Boot Control Block
° Information needed by system to boot OS from a volume

• One per volume

• Block is empty if volume /disk has no 05

• Usually first block of a volume
• UFS : boot block

• NTFS : partition boot sector

• More : Operating systems concepts , Boot Block , pg 480 (Galvin etat.)

2) Volume Control Block

° Contains info on volume/partition
• NO . of blocks in volume

,
size of blocks in volume

• Free block count
,
free block pointers

• Free FCB count
,
free FCB pointers

• UFS : superblock
• NTFS : stored in master file table (relational DB , one row / file)

3) Directory structure
•

Organise files
• UFS : file names and associated inode numbers (FCB)

• NTFS : stored in master file table

4) File - Control Block
• Per file

• unique identifier number
• UFS : inode number
° NTFS : stored as row in master file table

FCB

In - Memory structures

° Data loaded at Mount time
• Updated during file- system operations
• Discarded at dismount

1) Mount Table
° Information about each mounted volume

2) Directory structure cache
• Directory information on recently accessed directories

• For directories where volumes are mounted
, pointer to volume

table

3) System-wide Open File Table
° Contains copy of FCB of each open file
° Additional info for each file Cno . of processes that have it open)

4) Per- Process Open File Table
° Contains pointer to entry in system-wide Open File Table

• Additional info [pointer to current location in file
,
access mode)

5) Buffers
• File system blocks being read from / written to disk

CREATE NEW FILE

°

Application program calls logical file system

•

Depending on file system implementation , either a new FCB is

allocated or an FCB is allocated from the set of free FCBS

• System reads directory into memory , updates it with new filename
and FCB and writes it back to the disk

•

Logical file system calls file organisation module to map directory
1/0 to disk- block numbers

,
which are passed onto basic file

system and yo control system

• Recall hierarchy:

OPEN FILE

°

open C) system call from application program passes filename to

logical file system

• First searches system-wide open file table to see if file in use

by another process

• If already in use
, new entry created in per- process open file

table
, pointing to system-wide open file table entry

• If not already open , directory structure searched for given
filename and once found

,
FCB copied onto system-wide open file

table

•

Entry made in per- process open file table with pointer to entry
in system- wide open file table

•

open C) call returns appropriate pointer to entry in per-process

open file table (UNIX : file descriptor, Windows : file handler)

In memory file system structures

(a) File open (b) File read

CLOSE FILE

• Per- process table entry removed

• System-wide count decremented

° If system-wide count is 0
, updated metadata copied back to disk

directory structure and system-wide table entry removed

PARTITIONS 9 MOUNTING

• Disk can be sliced into different partitions

• Each partition may be raw (no file system) or cooked (containing
file system)

° Raw partitions used when file system not appropriate ceg: swap space
in UNIX

,
databases

,
info needed by RAID systems etc) ; Operating

Systems Concepts , Disk formatting , pg 479 (Galvin etat.)

Boot Partition

- Boot information can be stored in its own partition in its own

format

- Boot info is sequence of blocks loaded as an image into memory
- Execution of image starts at predefined location
- Boot loader finds and loads kernel and starts executing C can

understand multiple file systems and Oses)

- Read : Operating systems concepts , Boot Block , pg 480 (Galvin etat.)

Root Partition

- Contains OS kernel and other system files

- mounted at boot time

- Other volumes either mounted automatically or manually based on
OS

- OS verifies if device has valid file system
- OS updates in -memory Mount table

virtual file system

• File system implementation consists of three major layers

° File System Interface: based on openc) , readC) , writeC) and closec)

calls and involving file descriptors

• Virtual File System Interface : two main functionalities

1. separates file system generic operations from their implementation

by defining a VFS interface ; different VFS implementations can
exist on the same machine to access different file system types
locally

2. Provides mechanism for uniquely representing a file in a

network Cvnode : unique number network- wide)

• int open(...) -
• int close(...) -
• ssize_t read(...) -
• ssize_t write(...) -
• int mmap(...) -

- VFS distinguishes local Eg remote files

- VFS calls NFS protocol procedures for remote requests and file

system specific operations on local requests

- Object types defined by Linux VFS

(a) inode object : represents individual file

(b) file object : represents open file

(c) Superblock object : represents an entire file system (volume>

(d) dentry object : represents individual directory entry

- Each object type has a set of functions q each object has

a pointer to a function table containing all functions of

an object type (addresses of implementation)

- Eg: file object APIs :

open a file

close an opened file
read from file

write to file

memory-map a file

DIRECTORY IMPLEMENTATION

• Different algorithms Eg data structures affect performance

D Linear List
• Linear list of file names with pointers to data blocks

° Time-consuming to scan directory before creating new file

• New files added to end of list

• Various deletion implementations
• Linked List

, Array

• Linear retrieval time

• Sorted : binary search is quicker but creation q deletion is

complicated

2) Hash Table
° Table maps filename to index in a list

• Constant retrieval time

• Must reorganise when hash table needs to be expanded
• can instead use chaining for collisions and large no . of
entries

,
but linked list will be quite slow

Disk fpaa Allocation

1) CONTIGUOUS ALLOCATION

• Each file occupies contagious blocks of a disk

° Minimum seek time as all blocks are contiguous
• Defined by disk address and length Cblocks?
•

Eg: file at block b of length n occupies b
,
b-11

, . . . ,
btn - l

blocks

° Directory entry for each file indicates disk address 4 length
° Supports both sequential q direct access

Shortcomings

1. Difficulty in finding contiguous blocks for a new file

(managed by management systems for free space)

2. External fragmentation free space broken and scattered
- One solution: copy entire file system to another disk

,

free original disk , copy files back by allocating contiguous
space extremely time-consuming [compacting

- compaction done when disk unmounted coff - time>

3. Determining space required for a file beforehand
- Some systems use extents when a contiguous chunk is
exhausted

- Pointer to next extent and size of block recorded

- Used by Veritas file system (high performance replacement
for standard UNIX UFS)

2) LINKED ALLOCATION

• Each file linked list of disk blocks (located anywhere>
°

Directory contains pointer to first Eg last blocks of file

• New file : new entry in directory
•

Directory entry has pointer to start 4 end blocks , initial ised
to NULL

° Write causes free- space management system to find free block
,

perform write and linked to eof

• Read : read blocks by following pointers
• File size need not be defined

shortcomings

1 . Only sequential - access files
- Each block requires disk read

2. Space allocated to pointers increases file size
- Solution : use clusters instead of blocks

- Cluster: multiple blocks together , reducing pointer space
- Increases internal fragmentation

3. Reliability low if a pointer in the middle is lost / damaged
- Solution: doubly linked list

3) FILE ALLOCATION TABLE (FAT)

• variation of linked allocation
• Used by MS-DOS

• Section of disk at beginning of each volume set aside for

FAT

• Indexed by block number, one entry for each block

• Directory entry contains block number of first block of file
• Table entry of block number contains block number of next

file

• Last block has special eof entry in table

° Unused block indicated by value 0 in table

shortcomings

1. Significant number of disk head seeks for FAT reading
- Solution: cache FAT

4) INDEXED ALLOCATION

• Without FAT
,
direct access in linked allocation very inefficient

• All pointers together in one location : index block

• Each file has own index block (array of disk
- block

addresses)

• ith entry of index block is ith block

• Direct access without external fragmentation (any free block

can satisfy request for more space)

• Pointer overhead of index block greater than linked allocation

[entire index block needs to be allocated)

•

Every file has index block; size of index block needs to be

decided
• Index block size limits size of file .

Solutions

1. Linked scheme

- index block : one disk block
- large files : several index blocks

2. Multilevel index
- first level index block to point to second level index

block

3. Combined scheme
- Used in UNIX File systems
- First x pointers of index block stored in file inode

- First m cof the x) pointers point to direct blocks
- Next x-m pointers point to indirect blocks
- First is single indirect , then double indirect

performance

• Most efficient method depends on access type (sequential or
direct)

• Some systems : access method to be defined at file creation

time and method chosen based on that

•

Many layers of indexing can be quite slow

